

PHYSICAL PRINCIPLES OF COMPUTED TOMOGRAPHY

Presentation: Mohamad Akbarnejad Radiobiology and Radiation Protection MSC

Spatial resolution

Contrast resolution

*****Temporal resolution

Spatial Resolution Ability to detect a small object easily distinguished

- from background
- Display Field of View (DFOV) size
- Reconstruction filter (algorithm, kernel)
- X-ray tube focal spot size
- Image thickness (blurs edges of objects)
- Pitch (blurs edges of objects)
- Patient motion
- Image zoom

Voxel size = DFOV/512

X-Y Voxel Size

Pixels and Image Matrices

Pixels and Image Matrices

Effects of Recon Filters on Resolution & Noise

Std Recon

Soft Recon

Effects of Recon Filters on Resolution & Noise

Std Recon

1111 III

Ē

Bone Recon

Effects of Recon Filters on Resolution & Noise

Std Recon

Detail Recon

Effects of Recon Filters on Noise

Recon Filter	Std Dev
	Water Img
Soft	3.8
Standard	4.7
Lung	19.6
Detail	6.5
Bone	18.8
Edge	35.8
Bone Plus	27.0

Contrast Resolution Ability to see a small object not easily distinguished from background (NOISE)

- Effective mAs mA * time / pitch
- Image thickness
- Patient size
- Reconstruction filter
- Viewing conditions

ACR Phantom - Low Contrast Section

120 kVp, 1600 mAs

120 kVp, 192 mAs

High dose scan

Low dose scan

Viewing Conditions - Contrast

- Distance
- Ambient (room) lighting
 - Cannot see the stars in the daytime
- Monitor brightness
- Reflections
- Viewing angle (flat screens)
- [Age of eyeballs...]

Temporal resolution:

توانایی سیستم برای متمایز سازی جزئیات یک کمیت سنجشی از نظر زمانی در یک سیگنال را گویند

SEQUENTIAL-SLICE BY SLICE SCANNING

CT Generations

"Generation" is used to label CT tube-detector designs

3rd Generation Design Rotating tube & detector

4th Generation Design Fixed ring detector

3rd & 4rd Generation

Four step process of slice by slice sequential CT scanning

Scanning:

1-Start2-Data acquisition3-Stop4-Move

1- START:

Tube & detectors accelerate to a constant speed

2-Data acquisition

X-ray tube energized & data collected for 360 degrees

3- Stop

Stop tube & detectors slow down & stop

4- Move

Tube & patient indexed to the next scanning position

Limitation of slice by slice sequential CT scanning

1- Longer examination time

Scan Range = 300mm

10mm

10mm

2-Certain portions of the anatomy are omitted because of patient respiration phase

Deep Inspiration

Shallow Inspiration

Image Reconstruction with Gaps

10mm

3-Inaccurate generation of 3D images

CT Endoscopy

4-Only a few slices are scanned during maximum contrast enhancement when the contrast enhancement technique is useable

Dual Phase Liver Exam Liver Metastases

Arterial Phase

□ Venous Phase

زاويه چرخش	زمان اسکن	
180	6 دقيقه	نسل اول
180	18 ثانيه	نسل دوم
360	0/5 ثانيه	نسل سوم
360	0/5 ثانيه	نسل چهارم

Scanning:

1-Start2-Data acquisition3-Stop4-Move
ISD: inter scan delay

ISD is dead time

What can be done to omission ISD in CT sequential?

Helical Scan Principle

Spiral CT scan

helical x-ray tube path around patient

Continuous data acquisition

Reconstruction of arbitrary slices (either contiguous or overlapping) within the scanned volume Distance between the slices is called Increment

Spiral CT: Scanning Principle

Kalender WA et al. Radiology 1989; 173(P):414 and 1990; 176:181-183

Spiral (helical) CT

Spiral CT and Spiral multislice CT:

- Volume acquisition may be preferred to serial CT
- Advantages:
 - dose saving:
 - reduction of single scan repetition (shorter examination times)
 - replacement of overlapped thin slices (high quality 3D display) by the reconstruction of one helical scan volume data
 - use of pitch > 1
 - no data missing as in the case of inter-slice interval
 - shorter examination time
 - to acquire data during a single breath-holding period avoiding respiratory disturbances
 - disturbances due to involuntary movements such as peristalsis and cardiovascular action are reduced

Limitation:

Length cableImage processing

A Look Inside a Slip Ring CT

Note: how most of the electronics is placed on the rotating gantry

SLIP RINGS

Slip rings – allow continuous gantry rotation

EANM 2003

Slip-ring

Requirements for data acquisition

1- Continuously rotating scanner base on slip ring technology

Slip-ring Scanner

2- Continuously couch movement

3-Increase in load ability of the x-ray tube, capable of delivering at least 2000 MA per revolution continuously time it tasks to scan the volume of the tissue throughout

4- Increased cooling capacity

5- Spiral/helical weighting algorithm

 $1 \times 8 + 1 = 9$ $12 \times 8 + 2 = 98$ 123 x 8 + 3 = 987 $1234 \times 8 + 4 = 9876$ 12345 x 8 + 5 = 98765 123456 x 8 + 6 = 987654 1234567 x 8 + 7 = 9876543 12345678 x 8 + 8 = 98765432 123456789 x 8 + 9 = 987654321

6- mass memory buffer to store the vast amount of data collected

What is Spiral Scan? -- just 4^{(c}C^{?)}

Continuously rotating tube/detector system

Continuously generating X-ray

□ Continuously table feed

 \square Continuously data acquisition

Question:

